skip to main content


Search for: All records

Creators/Authors contains: "Fournelle, John H."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract The relatively recent entry of field emission electron microprobes into the field of microanalysis provides another tool for the study of small features of interest (e.g., mineral and melt inclusions, ex-solution lamellae, grain boundary phases, high-pressure experimental charges). However, the critical limitation for accurate quantitative analysis of these submicrometer- to micrometer-sized features is the relationship between electron beam potential and electron scattering within the sample. To achieve submicrometer analytical volumes from which X-rays are generated, the beam accelerating voltage must be reduced from 15–20 to ≤10 kV (often 5 to 7 kV) to reduce the electron interaction volume from ~3 to ~0.5 μm in common geological materials. At these low voltages, critical Kα X-ray lines of transition elements such as Fe are no longer generated, so L X-ray lines must be used. However, applying the necessary matrix corrections to these L lines is complicated by bonding and chemical peak shifts for soft X-ray transitions such as those producing the FeLα X-ray line. It is therefore extremely challenging to produce accurate values for Fe concentration with this approach. Two solutions have been suggested, both with limitations. We introduce here a new, simple, and accurate solution to this problem, using the common mineral olivine as an example. We also introduce, for the first time, olivine results from a new analytical device, the Extended Range Soft X-ray Emission Spectrometer. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract Although calcareous anatomical structures have evolved in diverse animal groups, such structures have been unknown in insects. Here, we report the discovery of high-magnesium calcite [CaMg(CO 3 ) 2 ] armor overlaying the exoskeletons of major workers of the leaf-cutter ant Acromyrmex echinatior . Live-rearing and in vitro synthesis experiments indicate that the biomineral layer accumulates rapidly as ant workers mature, that the layer is continuously distributed, covering nearly the entire integument, and that the ant epicuticle catalyzes biomineral nucleation and growth. In situ nanoindentation demonstrates that the biomineral layer significantly hardens the exoskeleton. Increased survival of ant workers with biomineralized exoskeletons during aggressive encounters with other ants and reduced infection by entomopathogenic fungi demonstrate the protective role of the biomineral layer. The discovery of biogenic high-magnesium calcite in the relatively well-studied leaf-cutting ants suggests that calcareous biominerals enriched in magnesium may be more common in metazoans than previously recognized. 
    more » « less